S2™

Distal Targeting Device

Operative Technique

Trauma
This publication sets forth detailed recommended procedures for using Stryker Trauma devices and instruments.

It offers guidance that you should heed, but, as with any such technical guide, each surgeon must consider the particular needs of each patient and make appropriate adjustments when and as required.

A workshop training is required prior to first surgery.

We greatly acknowledge and appreciate the contributions to this operative technique made by:

Dr. Gilbert Taglang,
Chief Surgeon – Emergency Department
Center of Traumatology and Orthopaedics,
CTO – Strasbourg, France

Dr. Henry Mathevon,
Traumatology and Orthopaedics Department
Centre Hospitalier de Dunkerque
Dunkquerque – France

Contributing Surgeon:

Dr. George Anastopoulos,
Dept. of Orthopaedics and Traumatology
General Hospital "G. Gennimatas"
Athens,
Greece
Contents

1. Introduction
2. Distal Targeting Device Components
3. Operative Technique – Distal Guided Locking via Distal Targeting Device
 3.1. Distal Targeting Device Calibration
 3.1.1. Assembly
 3.1.2. Length and A/P Adjustments
 3.1.3. Target Clip Adjustment
 3.2. Nail Insertion
 3.3. Distal Guided Locking
 3.3.1. Nail detection
 3.3.2. Locking the most Proximal Hole
 3.3.3. Locking the most Distal Hole
 3.3.4. Distal guided locking in case of very distal fractures

Ordering Information – Instruments
Features and Benefits

1. Introduction

The S2™ Nailing System represents the latest and most comprehensive development of the original intramedullary principles presented by Prof. Gerhard Küntscher in 1940.

Stryker Trauma has created this new generation locking nail system, bringing together all the capabilities and benefits of separate nailing systems to create a single, rationale surgical resource for fixation of long bone fractures.

The S2™ Instruments represent a breakthrough in the integration of the instrument platform which can be used not only for the complete S2™ Nailing System, but will be the platform for all future Stryker Trauma nailing systems, reducing complexity and inventory.

In addition, Stryker Trauma has created a special Distal Targeting Device for Distal Guided Locking of the S2™ Nails.

The S2™ Distal Targeting Device offers the competitive advantages of:

- Minimizing fluoroscopy time
- Helping to avoid misdrilling
- No additional hole to be drilled into the bone
- Easy calibration for each type of S2™ Nail.

Same device and same technique are used for the S2™ Femoral Nail A/R and S2™ Tibial Nail (Fig. 1a), as well as for the S2™ Femoral Nail Compression and S2™ Tibial Nail Compression (Fig. 1b).
Features and Benefits

Note:
Based on the fact that the Distal Guided Locking technique with the Distal Targeting Device is the same for Femoral or Tibial Nails, the following Operative Technique does not describe the surgical steps separately for Femoral or Tibial Nails. The S2™ Femoral Nail A/R in antegrade mode was chosen to describe the technique.

The S2™ Nails have two longitudinal grooves (one on each side of the nail), between the 2 M/L Distal Locking Holes, specially designed for the Distal Guided Locking technique with the Distal Targeting Device (Fig. 2a & b).

A Pilot Hole is drilled just between the Distal Locking Holes, in front of the groove.

The main principle of this technique is based on nail detection with a Probe (1812-5301) inserted into this groove (Fig. 2a). The groove is used to further guide the Probe into the Locking Hole (Fig. 2b).

Note:
Prior to drilling the Pilot Hole, one fluoroscopic image must be obtained to confirm the appropriate alignment of Target Device and Nail.

Note:
The distance between the 2 M/L Distal Locking Holes is the same for all S2™ Nails.
2. Distal Targeting Device Components

The Distal Targeting Device consists of 3 main components (Fig. 3a–3c):

- **Calibration Unit** – connected to the Nail Adapter and Targeting Arm, provides adjustments of length and A/P angle for the Distal Targeting Device (Fig. 3a). The Calibration Unit can be disassembled (for sterilization) in five parts:
 - Calibrator (1812-5021)
 - Rotation Cage (1812-5030)
 - Transition Plate (1812-5040)
 - Excentric Axle (1812-5052)
 - Excentric Lever (1812-5015)

- **Target Clip** (1812-5252) – attached to the Targeting Arm, provides final calibration adjustments for each type of S2™ Nail (Fig. 3b).

 There are two screws on the Target Clip:
 - a **Tightening Screw** (1812-5292) to lock the Target Clip in the appropriate position established during calibration. The Tightening Screw Head can be removed after locking.
 - a **Fixation Screw** to lock the Tissue Protection Sleeve (1806-0185) into the distal hole of the Target Clip during Calibration and Distal Guided Locking.
Components

- **Targeting Arm** (1812-5100) - straight rod connecting the Calibration Unit with the Target Clip (Fig. 3c).

The **Target Clip** (Fig. 4) features 2 locking holes corresponding to the 2 M/L Distal Locking Holes of the S2™ Nails, and 3 central holes between the 2 locking holes. Using a central hole, a Pilot Hole is drilled into the first cortex, targeting the groove between the 2 M/L Distal Locking Holes of the Nail.

Note:
One fluoroscopic image must be obtained to confirm the appropriate Hole on the Target Clip to be used for Pilot Hole drilling (see details on page 14).
Note: This Operative Technique does not describe the entire S2™ Nailing surgical procedure. Detailed information can be found in the following Operative Techniques:

- S2™ Femoral Nail A/R – Operative Technique (Ref. No: B1000013)
- S2™ Tibial Nail – Operative Technique (Ref. No: B1000014)
- S2™ Femoral Nail Compression – Operative Technique (Ref. No: B1000015)
- S2™ Tibial Nail Compression – Operative Technique (Ref. No: B1000016)

Note: If the S2™ Distal Targeting Device is used, distal guided locking must always be performed before proximal locking.

Note: The use of a traction pin in the area of the femoral condyles may interfere with the use of the Distal Targeting Device. The necessary preoperative assessments should be made regarding:

- a potentially safe location for the pin that should not interfere with the device, (traction pin should not protrude more than 2cm on the lateral side or, it should be placed into the proximal tibia)
- safe removal of the pin after the nail has been inserted, or
- using some other form of traction or patient positioning.

A Quick Reference Chart can be attached to the Tray and used as a guide for the locking technique with the Distal Targeting Device. The Chart comes together with the Instrument Tray and can stand the normal sterilization process.
Operative Technique

3.1. Distal Targeting Device Calibration

Before nail insertion, the Distal Targeting Device must be calibrated for the selected nail.

Calibration comprises 3 steps:
1. Assembly
2. Length and A/P adjustments
3. Target Clip Adjustment

3.1.1. Assembly

- The selected S2™ Nail is assembled onto the Nail Adapter (1806-8001) and locked with the Nail Holding Screw (1806-8005). Tighten the Nail Holding Screw with the Universal Socket Wrench (1806-0400) so that it does not loosen during calibration (Fig. 5).

Note:
Femoral Nail curvature must match the curvature of the femur (anterior bow). The Tibial Nail must be assembled with the convexity of the Herzog Bend posterior and the Nail Adapter on the medial side of the tibia.

- Take the small calibration box out of the S2™ Distal Targeting Instrument Tray and place it on top of the Tray (Fig. 6).

- Open the sliding lid by releasing the screw. Insert the Nail Adapter and secure it in place by closing the sliding lid and tightening the screw (Fig. 7a & 7b).

Note:
The Nail Adapter can be placed on the calibration box in 2 positions. The correct position for calibration is with the nail mounted with the Anterior Side Up.
Operative Technique

- Insert the Rotation Cage (1812-5030) into the Calibrator (1812-5021) (Fig. 8).

- Slide in the Transition Plate (1812-5040) (Fig. 9) and secure it in place by inserting the Excentric Axle (1812-5052) (Fig. 10).

Note:
The Excentric Axle can only be inserted from the left side of the Calibrator.

- Insert the Excentric Lever (1812-5015) in the dedicated holes of the Calibrator, as shown in Fig. 11.

Note:
After assembling, turn the Excentric Lever downwards to allow sliding of the Calibration Unit onto the Nail Adapter.

- Slide the assembled Calibration Unit over the Nail Adapter (Fig. 12a) and lock it in place by turning the Excentric Lever (Fig. 12b).

Note:
The Calibration Unit must always be attached to the Nail Adapter with the inscription "ANTERIOR" on top. For easier manipulation, it is recommended to have the Excentric Lever opposite to the Targeting Arm.

- Insert the Targeting Arm (1812-5100) into the Rotation Cage and attach the Target Clip (1812-5252) and Tightening Screw (1812-5292) as shown on Fig. 13.

Note:
The Target Clip should always be attached to the Target Arm with the sliding metal plate on top.
3.1.2. Length and A/P Adjustments

Note:
Before starting any adjustments, make sure that the Excentric Lever is firmly tightened on the Nail Adapter and that the Tightening Screw and Excentric Axle are unlocked so that free movements of the Targeting Arm (Fig. 13a) and Target Clip (Fig. 13b) can be obtained.

- Insert the Calibration Pin (1812-5331) into the most proximal hole of the Target Clip (Fig. 14a). The hole features a metallic inlay and is therefore easily recognised.

Note:
Two identical Calibration Pins are available:
- one is inserted in the Distal Clip as shown in Fig. 14a & b.
- the other one is inserted in the Excentric Axle and used as a lever to tighten it (Fig. 15).

- With one hand holding the Distal Clip with Calibration Pin inside, adjust the Distal Targeting Device in length and A/P angle (Fig. 14a) until the Calibration Pin passes through the most proximal distal locking hole of the S2™ Nail (Fig. 14b).

Note:
It is important to hold the Target Clip with one hand during the calibration so that gravitational forces cannot influence the position of the calibration pin.

- Tighten the Excentric Axle with the calibration pin attached as shown in Fig. 15.

- Remove the Calibration Pin from the Excentric Axle.
Operative Technique

3.1.3. Target Clip Adjustment

- Turn the Target Clip until the most distal locking hole is aligned with the most distal hole of the S2™ Nail (Fig. 16).

- Insert the Tissue Protection Sleeve, Long (1806-0185), assembled with the Drill Sleeve, Long (1806-0215), through the most distal hole of the Target Clip and position the assembly close to the S2™ Nail (Fig. 17).

Note:
When the Sleeve is close to the Nail push and tighten the Fixation Screw to firmly lock the Tissue Protection Sleeve in the desired position (Fig. 17).

- Check the calibration of the Distal Targeting Device by inserting the Ø5.0×230mm Drill (1806-5000) into the Drill Sleeve. The Drill must be able to pass easily in the hole of the S2™ Nail.

- Lock the Target Clip into position by hand tightening the Tightening Screw (Fig. 18).

Note:
When final tightening is achieved, remove the screw head to avoid loosen the calibration during the next steps of procedure.

Note:
Remove the Distal Targeting Device from the Nail Adapter by releasing only the Excentric Lever.

- Remove the Sleeves and the Calibration Pin and place the Distal Targeting Device on the dedicated space of the tray (Fig. 19).

The Distal Targeting Device is now ready and calibrated for use.
3.2. Nail Insertion

Note:
A chamfer is located on the driving end of the nail in order to denote the end under X-Ray. Three circumferential grooves are located on the insertion post, at 2mm, 10mm and 15mm from the driving end of the nail. Depth of insertion may be visualized with the aid of fluoroscopy.

- Insert the S2™ Nail following the standard Operative Technique but, approximately 10mm deeper than its final anticipated position.

- For the S2™ Femoral Nails A/R (Fig. 20), this position is reached when the third groove on the insertion post is aligned with the entry point.

- The final insertion depth of the S2™ Nail will be reached in a later step, after pulling back the nail approximately 10mm (Fig. 21).

Note:
Distal Guided Locking must always be performed prior to Proximal Locking. This is because the Distal Guided Locking Technique requires free movement of the nail in the medullary canal.

Note:
In case of small distal fracture fragments, the nail can be inserted approximately 10mm less deeper than its final position.

In this case, the final insertion depth of the S2™ Nail will be reached in a later step, after inserting the nail approximately 10mm more.
3.3. Distal Guided Locking

Operative Technique

3.3.1. Nail Detection

- After inserting the nail, attach the Distal Targeting Device to the Nail Adapter (Fig. 22a) and lock it in place by tightening the Excentric Lever (Fig. 22b).

Note:
The Distal Targeting Device should be placed as close as possible to the skin.

Depending on the entry point, fracture pattern and/or reduction, more or less important bending of the nail might be registered after nail insertion. However, the S2™ Distal Targeting Device is designed to target the groove on the nail end and not directly the locking holes.

Note:
Prior to drilling the Pilot Hole, it is important to verify position of the Nail Adapter and Target Clip:

- The Nail Adapter must be placed in the frontal plane of the bone (Fig. 22a & 22b).
- One M-L fluoroscopic image must be obtained to confirm the appropriate hole on the Target Clip to be used for drilling of the Pilot Hole:
 - If nail shadow lies between the Markers, use central hole for pilot drilling (Fig. 23a).
 - If nail shadow overlaps the upper Marker, use upper hole for pilot drilling (Fig. 23b).
 - If nail shadow overlaps the lower Marker, use lower hole for pilot drilling (Fig. 23c).

Assistance might be needed to hold the Nail Adapter in the appropriate position.

Note:
On the M-L fluoroscopic image, the distal locking holes of the nail must be perfectly round.

Note:
If nail shadow is above the upper X-Ray Marker or below the lower X-Ray Marker, verify if the fluoroscopic image was taken in a true M-L view (round distal locking holes).
If this is confirmed, do not use the Distal Targeting Device for guided locking.
Operative Technique

- Place the Tissue Protection Sleeve, Long (1806-0185), together with the Drill Sleeve, Long (1806-0315) and Trocar, Long (1806-0315) through the appropriate Pilot Hole of the Target Clip (Fig. 24).

Note:
A white mark on the Target Clip indicates the position of central holes to be used for Pilot Hole drilling.

- Make a small skin incision and push the assembly until the Tissue Protection Sleeve is in contact with the lateral cortex for the Femur or the medial cortex for the Tibia. The Trocar is removed, while the Tissue Protection Sleeve and the Drill Sleeve remain in position (Fig. 25).

Note:
Make sure the incision is done exactly in front of the Sleeve assembly in order to avoid any displacement of the assembly during insertion through the soft tissue.

Note:
During all operations like drilling through the Distal Targeting Clip, make sure you keep the Targeting Arm parallel with the femur. Avoid applying any antero-posterior forces on the Targeting Arm as this may lead to deflection of the Arm relative to Nail Adapter and will have a negative influence on the S2™ Nail detection.

- Use the Ø5.0×230mm Center-tipped Drill (1806-5040), to drill a Pilot Hole into the first cortex only (Fig. 26).

- Remove the Drill Sleeve and leave the system in place.

- It is now very important to clean the Pilot Hole properly of all the debris that might remain after drilling.
Operative Technique

The Ø5mm Drill may not be able to open a cylindrical tunnel up to the surface of the nail (especially in the condyle area of the femur). This must be completed with the Hand Reamer and the Curette through the Tissue Protection Sleeve.

- Insert the Hand Reamer (1812-5351) into the Tissue Protection Sleeve (Fig. 27) and advance it until it penetrates the cortex.

- Use the Curette (1812-5341 Straight or 1812-5342 Curved) through the Tissue Protection Sleeve to carefully clean the debris from the groove located between the 2 M/L distal Locking Holes of the nail (Fig. 28). A metal sound can be heard when the Curette is touching the nail.

- After cleaning the Pilot Hole, advance the Probe (1812-5301) through the Tissue Protection Sleeve into the Pilot Hole.

- Remove the Distal Targeting Device and leave the Probe in place.

Note:
If the hole was not well cleaned through the Tissue Protection Sleeve, repeat the cleaning procedure after removing the Distal Targeting Device.

- Manipulate the Probe through the Pilot Hole to find the groove between the two distal locking holes (Fig. 29). An optional Probe Handle (1812-5306) is available to help manipulating the the Probe.

Note:
A flat surface along the Probe shaft is designed parallel with the flat tip of the Probe to indicate the position of the flat tip inside the groove of the S2™ Nail.
Operative Technique

There are three possible positions of the S2™ Nail relative to the Pilot Hole:
1. The S2™ Nail sits exactly opposite to the hole. In this case you can easily feel with the Probe the groove of the S2™ Nail between the distal holes.
2. The S2™ Nail sits more anterior in the medullary canal. You can feel with the Probe the postero-lateral surface of the S2™ Nail. With a slight external rotation of the Nail Adapter, the Probe will slide into the groove of the S2™ Nail (Fig. 30).
3. The S2™ Nail sits posterior in the medullary canal. You can feel with the Probe the antero-lateral surface of the S2™ Nail. With a slight internal rotation of the Nail Adapter, the probe will slide into the groove of the S2™ Nail (Fig. 30).

The last two possibilities described above can be encountered with femoral and tibial nails.

Note:
For the Tibial Nailing procedure, the Nail Adapter is always placed on the medial side of the leg. Therefore, to facilitate detection of the groove, slightly turn the Nail Adapter internally if the Nail sits more anterior in the medullary canal or, externally if the Nail sits posterior in the medullary canal.

Verify that the Probe is in the groove by turning the Probe around its axis. If the Probe is in the groove, it will touch the edges of the groove and will only turn few degrees left or right (Fig. 31).

Note:
If you cannot detect the groove easily, it might be possible that there are still some bone debris in front of the groove. Therefore, clean the Pilot Hole again with the Hand Reamer and Curette until you can feel the nail.

- After finding the groove, an assistant shall attach the Universal Rod (1806-0110) to the S2™ Nail Adapter and use the Slotted Hammer (1806-0170) to gently retract the nail by approximately 10mm.

- While the assistant is pulling out the nail, keep gentle pressure on the Probe so that the tip of the Probe is sliding inside the groove of the nail and therefore guided into the most distal locking hole (Fig. 31a & 31b).

Note:
In case the nail was initially inserted 10mm short of the final position, the assistant shall attach the Strike Plate (1806-0150) to the Nail Adapter and use the Slotted Hammer to insert the nail to its final position. In this case, the Probe will slide into the more proximal distal hole of the nail (Fig. 31c).
Operative Technique

• Remove the Universal Rod or Strike Plate after the final position of the nail is achieved.

Note:
With one hand holding the Probe and the other one the Nail Adapter, verify that the Probe is in the locking hole by trying to turn up and down the Nail Adapter. If the Probe is in the locking hole the S2™ Nail will turn only a few degrees.

Note:
Another way to verify if the Probe is positioned into the locking hole is by inserting a Guide Wire through the Nail. Penetration of the Guide Wire will be stopped by the Probe if this is located in the locking hole.

• Connect the Fixation Sleeve (1813-5321) to the Handle (702630) and advance the Fixation Sleeve over the Probe (Fig. 32a). To facilitate insertion, turn the Fixation Sleeve while applying axial force.

Note:
Confirm that the Fixation Sleeve has passed through the locking hole by trying to turn up and down the Nail Adapter. If the Fixation Sleeve is in the locking hole, the Nail Adapter cannot be turned. Again, another way to verify if the Fixation Sleeve is positioned into the locking hole is by inserting a Guide Wire through the Nail.

• Remove the Handle and leave the Fixation Sleeve in place (Fig. 32b).

Note:
If the tip of Fixation Sleeve has passed through the opposite side of the nail, the Fixation Sleeve should be parallel with the Nail Adapter (Fig. 32b).
Operative Technique

3.3.2. Locking the most Proximal Hole

- Slide the Distal Targeting Device over the Nail Adapter with the Target Clip positioned under the Fixation Sleeve (Fig. 33a).

Note:
The Fixation Sleeve must be inserted into the most distal hole of the Target Clip. In order to easily attach the Target Clip over the Fixation Sleeve, pull out the Fixation Screw located at the tip of the Target Clip (Fig. 33a). This will open the most distal hole of the Target Clip.

- Push and tighten the Fixation Screw to firmly lock the Target Clip on the Fixation Sleeve (Fig. 33b).

- Lock the Distal Targeting Device on the Nail Adapter by turning the Excentric Lever.

- Place the Tissue Protection Sleeve, Long (1806-0185), together with Drill Sleeve, Long (1806-0215) and the Trocar, Long (1806-0315) through the most proximal hole of the Target Clip (Fig. 34).

- Make a small skin incision and push the assembly until the Tissue Protection Sleeve is in contact with the lateral cortex for the Femur or the medial cortex for the Tibia.

- Remove the Trocar and leave the Tissue Protection Sleeve and Drill Sleeve in place.

- With the Ø4.2×340mm calibrated Drill (1806-4360) drill through both cortices (Fig. 35a).

- The screw length may be read directly off of the calibrated Drill at the end of the Drill Sleeve (Fig. 35b).
Operative Technique

Note:
To verify if the Drill has passed through the locking hole, insert a Guide Wire through the Nail Holding Screw until resistance is felt. Mark insertion depth at the level of Nail Holding Screw Head. Remove the Guide Wire and verify if the insertion depth matches the distance between Nail Holding Screw and Drill Sleeve.

- If measurement with the Screw Gauge, Long (1806-0325) is preferred, first remove the Drill Sleeve, Long and read the screw length directly at the end of the Tissue Protection Sleeve, Long (Fig. 36a & 36b).

Note:
The position of the end of the Drill as it relates to the far cortex is equal to where the end of the screw will be. Therefore, if the end of the Drill is 3mm beyond the far cortex, the end of the screw will also be 3mm beyond.

Note:
The Screw Gauge, Long is calibrated so that with the bend at the end pulled back flush with the far cortex, the screw tip will end 3mm beyond the far cortex (Fig. 37).

- Alternatively, stop the drill when it engages the far cortex and measure the drill bit depth off the calibrated drill. Add 5mm to this length to obtain the correct screw length.

- When the Drill Sleeve is removed, the correct 5mm Fully Threaded Locking Screw is inserted through the Tissue Protection Sleeve using the Long Screwdriver Shaft (1806-0227) with Teardrop Handle (702429) (Fig. 38a).

Note:
Leave the Screwdriver Shaft inside the Tissue Protection Sleeve and remove the Teardrop Handle. Make sure the Screwdriver tip is engaged into the screw head and the Tissue Protection Sleeve is pushed over the Screw head, against the cortex. This will help ensure the stability of the system (Fig. 38b).
3.3.3. Locking the most Distal Hole

• Attach the Handle (702630) to the Fixation Sleeve.

• Remove the Fixation Sleeve and the Probe after releasing the Fixation Screw located at the tip of the Target Clip.

• Insert another Tissue Protection Sleeve, Long with Drill Sleeve, Long and Trocar, Long through the most distal hole of the Target Clip until the Tissue Protection Sleeve is in contact with the cortex (Fig. 39).

• Remove the Trocar and pass the Ø4.2×340mm calibrated Drill (1806-4360) through the first cortex and the nail. Start drilling only when you feel resistance of the second cortex (Fig. 40).

• Use the same technique to measure the screw length as described before, for the most proximal locking screw.

• Remove the Drill Sleeve and insert the selected 5 mm Fully Threaded Screw with the Screwdriver Long (1806-0232) (Fig. 41 & 42).

• Remove the Distal Targeting Device and Sleeves and follow the Operative Technique for the selected type of nail to perform the Proximal Locking.

Note:
The first cortex of the distal hole was used before as a Pilot Hole. The cortex was opened with the Ø5.0mm Drill. Therefore, in an osteoporotic bone, the screw head might penetrate the cortex if excessive forces are applied during insertion.
3.3.4. Distal Guided Locking in case of very distal fractures

If the fracture is very distal, the surgeon may initially insert the nail approximately 10mm less than its final position in order to further insert the nail approximately 10mm after the groove detection (rather than inserting the nail 10mm deeper and pulling it out 10mm like in the standard procedure). In this case, the probe will slide into the more proximal distal hole of the nail (Fig.43).

The reattachment of the Distal Targeting Device might be difficult and requires special attention:

− first, insert the Target Clip with the more proximal hole (the one with the metal ring inside) approximately 10mm over the Fixation Sleeve (Fig. 43).

− then, insert the Calibrator over the Nail Adapter and advance the Distal Targeting Device as close as possible to the skin. Lock the Distal Targeting Device in place by turning the Excentric Lever.

The Distal guided locking is performed in the standard manner with the only difference that first screw inserted is the more distal one (Fig.44).
Ordering Information - Instruments

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal Targeting Instruments</td>
<td></td>
</tr>
<tr>
<td>1812-5100</td>
<td>Targeting Arm</td>
</tr>
<tr>
<td>Calibration Unit (5 components)*</td>
<td></td>
</tr>
<tr>
<td>1812-5021</td>
<td>Calibrator*</td>
</tr>
<tr>
<td>1812-5030</td>
<td>Rotation Cage*</td>
</tr>
<tr>
<td>1812-5040</td>
<td>Transition Plate*</td>
</tr>
<tr>
<td>1812-5015</td>
<td>Excentric Lever*</td>
</tr>
<tr>
<td>1812-5052</td>
<td>Excentric Axle*</td>
</tr>
<tr>
<td>1812-5252</td>
<td>Target Clip</td>
</tr>
<tr>
<td>1812-5292</td>
<td>Tightening Screw</td>
</tr>
<tr>
<td>1812-5301</td>
<td>Probe (2×)</td>
</tr>
<tr>
<td>1812-5321</td>
<td>Fixation Sleeve</td>
</tr>
<tr>
<td>1812-5331</td>
<td>Calibration Pin (2×)</td>
</tr>
<tr>
<td>1806-0185</td>
<td>Tissue Protection Sleeve, Long</td>
</tr>
<tr>
<td>1806-0215</td>
<td>Drill Guide Sleeve, Long</td>
</tr>
<tr>
<td>1806-0315</td>
<td>Trocar, Long</td>
</tr>
<tr>
<td>1806-5040</td>
<td>Center-tipped Drill Ø5.0×230, AO (2×)</td>
</tr>
<tr>
<td>702630</td>
<td>Elastosil Hammer-Handle</td>
</tr>
<tr>
<td>1812-5351</td>
<td>Hand Reamer</td>
</tr>
<tr>
<td>1812-5341</td>
<td>Curette</td>
</tr>
<tr>
<td>1812-5142</td>
<td>Curette, curved</td>
</tr>
<tr>
<td>1812-5306</td>
<td>Probe Handle (optional)</td>
</tr>
<tr>
<td>1812-5401</td>
<td>Sterilisation Container</td>
</tr>
<tr>
<td></td>
<td>(Quick Reference Chart included)</td>
</tr>
</tbody>
</table>